Where Semantics Lies

Stephen Ramsay

Should the syntax of XML have been scrapped in favor of s@sgons? This
debate, which raged for years, and which occasionally easp has all the ring
of a religious war (Windows vs. Mac, Emacs vs. Vi, big-endianlittle endian,
and so forth).

The risks we take in even broaching the subject are manifotdlk based on
a question like this is destined to be both technical andpbphical, which is to
say, bad. And try as | might, | will undoubtedly seem guiltyfaforing one side
or another, whatever protestations | might make to the aoptit is in the nature
of religious warfare to be on one side or another, and to begveither way.

But my purpose here really isn't to settle this question v@neto re-introduce
the debate. What | want to do is use this mostly wrong-heade#-bnd-forth
to shake out something that | think is actually highly relev@ the topic of data
modeling—in the humanities, or anywhere else. That higbligvant point can be
stated pithily by asking “where the semantics lies” in oumpaitational systems.
In fact, what I'd like to say, is that this issue subtly affe¢he way we think
about data modeling, even when we try to think about data fimagde complete
isolation from any concerns about the use of data models,aor, éor that matter,
computational tractability.

But before | launch on this hopefully meaningful quest fardlogical insight,
perhaps | should explain the terms of the debate that gigeaoithese meditations.
What, to start with, is an s-expression?

An s-expression is a notation for representing tree strastwand it looks like
this:

[SLIDE]

(dictionary
(e-mail "electronic mail")
(htm "hypertext transport |anguage")

1

(xm "extensible markup | anguage"))

We could define s-expressions much more formally, using egaelt recursive
definition, but this is perhaps beside the main point. Bezaunyone looking at
this will say, “You mean like Lisp?”

Yes, like Lisp. But let’s lay that aside for a moment and justsider the fact
that anything we could possibly want to express in this matatan be expressed
using the tree-structure notation we call XML. To wit:

[SLIDE]

<di ctionary>
<emui | >el ectronic mail </ email >
<ht M >hypertext transport |anguage</htm >
<xm >ext ensi bl e mar kup | anguage</ xm >
</dictionary>

Now, I'm leaving off attributes here, but it's easy to imaginow we might add
them in. If we have:

[SLIDE]

<di ctionary>
<e-mai |l acronynF"fal se">electronic mail </ emil >
<htm acronynme"true">hypertext transport | anguage</htm >
<xm acronynm="true" >ext ensi bl e markup | anguage</ xm >
</dictionary>

We could do something like:
[SLIDE]
(dictionary
(e-mail :acronymfalse "electronic mail")

(htm :acronymtrue "hypertext transport |anguage")
(xm :acronymtrue "extensible markup | anguage"))

| don’t know if that’s the best way; several methods have lgeposed, whereby
a tree node can be annotated with a key-value pair. But th& ®this: These
two representations are 100% isomorphic. Anything | canndanie, | can do in
the other.

So you might suppose that one element of the debate involjwgaxs and
that is certainly true. Some people have argued quite vacify (Notice! | did
not use the word “correctly” just there) that XML is simply aedlessly verbose
form of s-expression syntax. The standard reply is thatteeymatters” (c.f. Paul
Prescod, one of the most vigorous defenders of XML over sesgions). The
s-expression syntax is certainly less busy. On the othed,ldmyou really want
your TEI document to end with seventy-five closing parergk@s

But that is not actually the center of this debate at all. Tév@er of the debate
is the charge that the XML version has “no semantics.”

[SLIDE]

<di ctionary>
<emui | >el ectronic mail </ email >
<ht M >hypertext transport |anguage</htm >
<xm >ext ensi bl e mar kup | anguage</ xmn >
</dictionary>

Before | delve into what such a thing could possibly meaniscbntext, let’s
dive down one additional rabbit hole (we’ll claw our way olpromise). What
does it mean for something to “have a semantics?”

The most frequently-offered answer to that question is‘S&nantics” refers
to what a particular representation “means.” Terrence, Rdro is the author of
the ANTLR parser generator (and therefore someone who ghsurkely know
what semantics is) says:

[SLIDE]

Loosely speaking, semantic analysis figures out what the imgans
(anything beyond syntax is calléle semantics.) (4)

Now, this appears in a book callédnguage Implementation Patterns. Hardly
light reading, but not a textbook on formal languages. Hestarly be forgiven
for speaking loosely. But when we turn to actual textbook$ommal languages,
we get statements like this:

[SLIDE]

This book is an analytic study of programming languages. goai
is to provide a deep, working understanding of the essertdiaepts
of programming languages [...] Most of the essentials ectatthe
semantics, or meaning, of program elements. (Friedman xv)

Now, both of these statements (and | could cite dozen mossh4e me to beg
the question: What is meaning? Or to put it more awkwardlyat\does it mean
for something to mean . ..something? Obviously, this papgeranly get worse.

My favorite denizen of this particular rabbit hole is Ludvwigttgenstein, who
offered what | continue to think is the most provocative amisto that question
ever given. Some of you may be familiar with the canonicaltgtion in which
his basic idea appears:

[SLIDE]

For a large class of cases—though not for all—in which we espl
the word “meaning” it can be defined thus: the meaning of a vigrd
its use in the language.

It can be difficult to see at first what is so radical about tlisaeption (Wittgen-
stein spends a few hundred pages drawing it out). Taken fatipHy, it might
seem to be a statement about context—that “how a word is usedportant. But
Wittgenstein goes considerably further than that, by tajgthe entire notion that
propositions are true or false—or otherwise “meaningfuliased on some con-
dition exterior to those propositions. In fact, what he Iseshys is that there isn’t
anything other than use in context. There isn’t anythingpees of beyond this
complex web of relations. “What is justice?” “Justice” iethet of moments in
which the term is deployed. That doesn’t make the questssifihonsensical or
unanswerable (“What is justice?” is, after all, an instaimcevhich the term is
employed), but it does make it unlikely that we’ll get very iiaforming a useful,
all-purpose definition. And since forming useful, all-pase definitions is pre-
sumably one of the goals of philosophy, we may find that pogingstions like
this gets us exactly nowhere.

What is useful about all of this for my purposes, though, esftct that this
idea of “meaning as use” give us not only as way to talk aboutmdational
representations, but as a way to describe computatiof iGemputation, stated
in the most minimalistic way possible, is about taking imf@ation from one state
to another. In the normative case, it is about taking songilstic construct and

4

producing another linguistic construct, though that is esgential. If you have
a process that can take information and produce more intowmave call that
process “a computation.” It's what happens when you prestjuals sign on a
calculator, and it’'s what happens when you Friend someort&aoabook.

The fact that we have some process by which to affect thadfivbamation indi-
cates something in particular about the information witholhhwe began: We say
that it “has a semantics.” And this restates Wittgenstepoint quite succinctly.
The information has meaning—has a semantics—because wegradunce other
states from it (“states” being anything from reorganizasido physical actions).
In the absence of such productions (whether actual or patgnhbe information is
literally “meaning-less.” And while that condition migh¢loare, it sets a boundary
condition on semantics. Most computational representatibave a semantics,”
because it is at least possible to imagine computationgjlprformed on them.
This is perhaps why Friedman and Wand (from whom | drew thatipus quota-
tion about the essentials of programming languages hawgidg tith semantics),
go on a few sentences later to say:

[SLIDE]

The most interesting question about a program as objeciNébat
does itdo?” (4)

If meaning is use, then who can argue?

So when the Lispers say that XML “has no semantics,” they agsymably
referring to the fact thdty itself, XML has no inherent ability to produce anything
at all. You need to describe that semantic meaning somevetezewhich is ex-
actly the same as saying that you need some process by whidateitesentation
is either transformed into some other kind of represemntato otherwise results
in another representation being produced.

But is that any less true of s-expressions? Isn't an s-egfmealso a repre-
sentation in search of a means by which it can be translatedsome other rep-
resentation? What could possibly cause someone to say-éxgiressions “have
a semantics,” while XML does not?

And the answer to that question does have to do with Lisp. s Lisp,
there is no inherent difference between the representationise for data and the
representation you use for the process (i.e. the code), byighe way, is called
“homoiconicity,” and it's an inherent property of all langges within the Lisp
family. The most striking example of th@itside the Lisp family is . .. wait for it
... XSLT. In either case, it means that any code you writese aldata structure in

5

the language, and conversely, any data structure you deeatdeast potentially
an executable process.

| say “potentially,” because the Lispers are completelytatally wrong when
they say that s-expressions have a semantics. They haveaatsesnf and only
if you also have a way of taking that representation and ustaegoroduce some-
thing else. That is to say, s-expressions have a semantiosi ilso have a Lisp
to process them.

The consequent notion for XML, is that XML has a semanticsd anly if
you also have a way of taking that representation and uspr@duce something
else. That is to say, XML has a semantics if you also have ansalte®mmbined
with some way to process it.

But notice the difference there. If you have s-expressipmsneed a Lisp run-
time. If you have XML, you need a schema (which is to say, a gnamdescrip-
tion combined with a type and structure ontology) combindth & (presumably
Turing-complete) language. The difference, in other woldss less to do with
angle brackets and parentheses, and much more to dovwte the semantics
lies within the overall system.

Itis possible, of course, to process s-expressions withispt It would also be
possible to separate the grammatical description of tygestmicture constraints
from the entity responsible for affecting the transformatand still be “doing
Lisp.” We are not talking about some kind of new affordanceerefd by Lisp,
some deficiency in the XML ecosystem, or the other way aroMigen it comes
to taking things from one information state to another, eittystem could be
designed either way.

So my question is this: Does it matter at all where you put émeantics? And
the answer to that is, | think, “yes"—and for more-or-less fame reason that
“syntax matters.”

The XML ecosystem implicitly imagines a radical decouplbejween the act
of data modeling and the act of processing data. In facteiaks the act of data
modeling itself into several discrete stages, which, ircfcal terms, translates
into a decoupling of the social act of marking up texts from ¢bcial act of mod-
eling data, and both from the social act of processing daiae lthe term “social
act” as a way of designating different potential functiorigsb descriptions,” if
you like—in the overall job of computation. You can be thegmer who decides
how a grammar is applied in a particular document instancey@ can be the
person who defines the grammar. Or, you can be the person whohesgrammar
and the document to translate the information to anoth&z.sta

What the Lispers argue for, is really a world in which the #éthkings are

6

combined. Some partition of roles is, of course, still pbkesibut in practice, the
Lisp ecosystem more-or-less demands that data modelindaagrocessing are
never far from one another. While it's possible to imaginesaxpression tagger
(maybe that would be a “parenner”), it is less easy to imatiiaeperson not also
being, at some level, a programmer.

But forget about Lisp (again). Because the real issue is mathker Lisp is
good or bad. The issue is whether the distributed, decoupledel embodied
in the XML ecosystem limits or expands our ideas about datdeiing, as com-
pared to a more centralized workflow in which data modelingager far from
data processing. And here, | will risk starting my own flame wa saying that,
practically speaking, it does.

It does, because it is not possible to fully describe the séigsof anything
apart from the processing that is enabled by the semanatiorthips so de-
scribed. An XML schema (and here, I'm talking about any kihdahema what-
soever) describes a grammar. It is, in fact, explicitly base BNF grammars,
which, of course, are used to describe programming languabes, and not any
particular instantiation, is the “data model” (a statemeith which the design-
ers of XML, by the way, are in full agreement). Typically, &nema defines a
set of data types and a set of ordering constraints (whickinagre semantically
meaningfulonly at the point at which the document is processed). But why stop
there? Why not use that schema to define a set of control stascfor processing
data? Why not state whether variables are bound late or, é&ily or not? Why
not define a set of additional data structures into which ttta dhay be trivially
transformed?

Well, you say, they did! It's called XSLT. And it's separat&nd optional.
And that’s good. And you might be right. In fact, | think yoteaBut the fact still
remains: Every data model is asymptotically approachingpagssing model. |
would even suggest that the question, “Are the data modelsawe proposed for
the humanities sufficient to the task?” is equivalent to thestion, “Does the
semantics reside in the right place in our model?”

Not because shifting the semantics around give you new psoug powers,
but because to the degree that any data model attempts toesttral with respect
to future processing regimes, it must limit the practicéb@afances offered by that
model to the data modeler. To do so might be to commit an actagfiranimity;
to construct a data model in the absence of any particulgneet about future
processing is presumably to allow a thousand processeautastio But it is also
to limit what can be modeled—because thaedactly where a good number of
the decisions about semantics is being made. We may comfestlves with the

7

thought that every step up the chain of abstraction allowserflexibility at the
processing level. But a dark voice remains—and should mentavery step up
the chain of abstraction also means separating further antkdef from what is
presumably the point of all of this—namely, the attempt tplei the computa-
tional tractability of the data. To give the processor mare/gr, is necessarily to
give the data modeler less control. Not just less controt dve processing, but
less control over the data model itself. So we really musoaskelves this: Does
havingless control over the data model—which is not the same thing aggay
“more flexibility"—make sense for our data?

Should we have gone this way? Should we have attempted tee@eaore
tightly coupled ecosystem in which the line between dataeting and data pro-
cessing vanishes as a practical matter (as it does in, fongea SQL)? Should
we now think about doing that? | don’t know. And I'm sorry to end wgbme-
thing so obviously decoupled from a practical recommewodatf any kind. But |
take the point of this symposium to have been, “Can we do wieatwant to do?”
And | think it's at least apposite to point out that as long asrevtalking about
what we want talo, we are talking at least partially about what our data models
cannot do by themselves.

Works Cited

Friedman, Daniel P and Mitchell WandEssentials of Programming Languages.
3rd ed. Boston: MIT P, 2006.

Parr, Terencel.anguage | mplementation Patterns. Raleigh, NC: Pragmatic, 2010.

Prescod, Paul. “XML is not S-Expressions.” Web. 11 March2Mttp://www.
prescod.net/xml/sexprs.html.

Wittgenstein, LudwigPhilosophical Investigations. Ed. P. M. S. Hacker. 4th ed.
Malden, MA: Wiley-Blackwell, 2009.

