
Where Semantics Lies

Stephen Ramsay

Should the syntax of XML have been scrapped in favor of s-expressions? This
debate, which raged for years, and which occasionally reappears, has all the ring
of a religious war (Windows vs. Mac, Emacs vs. Vi, big-endianvs. little endian,
and so forth).

The risks we take in even broaching the subject are manifold.A talk based on
a question like this is destined to be both technical and philosophical, which is to
say, bad. And try as I might, I will undoubtedly seem guilty offavoring one side
or another, whatever protestations I might make to the contrary. It is in the nature
of religious warfare to be on one side or another, and to be wrong either way.

But my purpose here really isn’t to settle this question, or even to re-introduce
the debate. What I want to do is use this mostly wrong-headed back-and-forth
to shake out something that I think is actually highly relevant to the topic of data
modeling—in the humanities, or anywhere else. That highly relevant point can be
stated pithily by asking “where the semantics lies” in our computational systems.
In fact, what I’d like to say, is that this issue subtly affects the way we think
about data modeling, even when we try to think about data modeling in complete
isolation from any concerns about the use of data models, or even, for that matter,
computational tractability.

But before I launch on this hopefully meaningful quest for theological insight,
perhaps I should explain the terms of the debate that give rise to these meditations.
What, to start with, is an s-expression?

An s-expression is a notation for representing tree structures, and it looks like
this:

[SLIDE]

(dictionary
(e-mail "electronic mail")
(html "hypertext transport language")

1



(xml "extensible markup language"))

We could define s-expressions much more formally, using an elegant recursive
definition, but this is perhaps beside the main point. Because anyone looking at
this will say, “You mean like Lisp?”

Yes, like Lisp. But let’s lay that aside for a moment and just consider the fact
that anything we could possibly want to express in this notation can be expressed
using the tree-structure notation we call XML. To wit:

[SLIDE]

<dictionary>
<email>electronic mail</email>
<html>hypertext transport language</html>
<xml>extensible markup language</xml>

</dictionary>

Now, I’m leaving off attributes here, but it’s easy to imagine how we might add
them in. If we have:

[SLIDE]

<dictionary>
<e-mail acronym="false">electronic mail</email>
<html acronym="true">hypertext transport language</html>
<xml acronym="true">extensible markup language</xml>

</dictionary>

We could do something like:

[SLIDE]

(dictionary
(e-mail :acronym false "electronic mail")
(html :acronym true "hypertext transport language")
(xml :acronym true "extensible markup language"))

2



I don’t know if that’s the best way; several methods have beenproposed, whereby
a tree node can be annotated with a key-value pair. But the point is this: These
two representations are 100% isomorphic. Anything I can do in one, I can do in
the other.

So you might suppose that one element of the debate involves syntax, and
that is certainly true. Some people have argued quite vociferously (Notice! I did
not use the word “correctly” just there) that XML is simply a needlessly verbose
form of s-expression syntax. The standard reply is that “syntax matters” (c.f. Paul
Prescod, one of the most vigorous defenders of XML over s-expressions). The
s-expression syntax is certainly less busy. On the other hand, do you really want
your TEI document to end with seventy-five closing parentheses?

But that is not actually the center of this debate at all. The center of the debate
is the charge that the XML version has “no semantics.”
[SLIDE]

<dictionary>
<email>electronic mail</email>
<html>hypertext transport language</html>
<xml>extensible markup language</xml>

</dictionary>

Before I delve into what such a thing could possibly mean in this context, let’s
dive down one additional rabbit hole (we’ll claw our way out;I promise). What
does it mean for something to “have a semantics?”

The most frequently-offered answer to that question is that“semantics” refers
to what a particular representation “means.” Terrence Parr, who is the author of
the ANTLR parser generator (and therefore someone who should surely know
what semantics is) says:

[SLIDE]

Loosely speaking, semantic analysis figures out what the input means
(anything beyond syntax is calledthe semantics.) (4)

Now, this appears in a book calledLanguage Implementation Patterns. Hardly
light reading, but not a textbook on formal languages. He cansurely be forgiven
for speaking loosely. But when we turn to actual textbooks onformal languages,
we get statements like this:

[SLIDE]

3



This book is an analytic study of programming languages. Ourgoal
is to provide a deep, working understanding of the essentialconcepts
of programming languages [. . . ] Most of the essentials relate to the
semantics, or meaning, of program elements. (Friedman xv)

Now, both of these statements (and I could cite dozen more) seem to me to beg
the question: What is meaning? Or to put it more awkwardly: What does it mean
for something to mean . . . something? Obviously, this paper can only get worse.

My favorite denizen of this particular rabbit hole is LudwigWittgenstein, who
offered what I continue to think is the most provocative answer to that question
ever given. Some of you may be familiar with the canonical quotation in which
his basic idea appears:

[SLIDE]

For a large class of cases—though not for all—in which we employ
the word “meaning” it can be defined thus: the meaning of a wordis
its use in the language.

It can be difficult to see at first what is so radical about this conception (Wittgen-
stein spends a few hundred pages drawing it out). Taken superficially, it might
seem to be a statement about context—that “how a word is used”is important. But
Wittgenstein goes considerably further than that, by rejecting the entire notion that
propositions are true or false—or otherwise “meaningful”—based on some con-
dition exterior to those propositions. In fact, what he really says is that there isn’t
anything other than use in context. There isn’t anything to speak of beyond this
complex web of relations. “What is justice?” “Justice” is the set of moments in
which the term is deployed. That doesn’t make the question itself nonsensical or
unanswerable (“What is justice?” is, after all, an instancein which the term is
employed), but it does make it unlikely that we’ll get very far in forming a useful,
all-purpose definition. And since forming useful, all-purpose definitions is pre-
sumably one of the goals of philosophy, we may find that posingquestions like
this gets us exactly nowhere.

What is useful about all of this for my purposes, though, is the fact that this
idea of “meaning as use” give us not only as way to talk about computational
representations, but as a way to describe computation itself. Computation, stated
in the most minimalistic way possible, is about taking information from one state
to another. In the normative case, it is about taking some linguistic construct and

4



producing another linguistic construct, though that is notessential. If you have
a process that can take information and produce more information, we call that
process “a computation.” It’s what happens when you press the equals sign on a
calculator, and it’s what happens when you Friend someone onFacebook.

The fact that we have some process by which to affect that transformation indi-
cates something in particular about the information with which we began: We say
that it “has a semantics.” And this restates Wittgenstein’spoint quite succinctly.
The information has meaning—has a semantics—because we canproduce other
states from it (“states” being anything from reorganizations to physical actions).
In the absence of such productions (whether actual or potential), the information is
literally “meaning-less.” And while that condition might be rare, it sets a boundary
condition on semantics. Most computational representations “have a semantics,”
because it is at least possible to imagine computations being performed on them.
This is perhaps why Friedman and Wand (from whom I drew that previous quota-
tion about the essentials of programming languages having to do with semantics),
go on a few sentences later to say:
[SLIDE]

The most interesting question about a program as object is, “What
does it do?” (4)

If meaning is use, then who can argue?
So when the Lispers say that XML “has no semantics,” they are presumably

referring to the fact thatby itself, XML has no inherent ability to produce anything
at all. You need to describe that semantic meaning somewhereelse; which is ex-
actly the same as saying that you need some process by which that representation
is either transformed into some other kind of representation, or otherwise results
in another representation being produced.

But is that any less true of s-expressions? Isn’t an s-expressionalso a repre-
sentation in search of a means by which it can be translated into some other rep-
resentation? What could possibly cause someone to say that s-expressions “have
a semantics,” while XML does not?

And the answer to that question does have to do with Lisp. Because in Lisp,
there is no inherent difference between the representationyou use for data and the
representation you use for the process (i.e. the code). This, by the way, is called
“homoiconicity,” and it’s an inherent property of all languages within the Lisp
family. The most striking example of thisoutside the Lisp family is . . . wait for it
. . . XSLT. In either case, it means that any code you write is also a data structure in

5



the language, and conversely, any data structure you createis at least potentially
an executable process.

I say “potentially,” because the Lispers are completely andtotally wrong when
they say that s-expressions have a semantics. They have a semantics if and only
if you also have a way of taking that representation and usingit to produce some-
thing else. That is to say, s-expressions have a semantics ifyou also have a Lisp
to process them.

The consequent notion for XML, is that XML has a semantics if and only if
you also have a way of taking that representation and using itproduce something
else. That is to say, XML has a semantics if you also have a schema combined
with some way to process it.

But notice the difference there. If you have s-expressions,you need a Lisp run-
time. If you have XML, you need a schema (which is to say, a grammar descrip-
tion combined with a type and structure ontology) combined with a (presumably
Turing-complete) language. The difference, in other words, has less to do with
angle brackets and parentheses, and much more to do withwhere the semantics
lies within the overall system.

It is possible, of course, to process s-expressions withoutLisp. It would also be
possible to separate the grammatical description of type and structure constraints
from the entity responsible for affecting the transformation and still be “doing
Lisp.” We are not talking about some kind of new affordance offered by Lisp,
some deficiency in the XML ecosystem, or the other way around.When it comes
to taking things from one information state to another, either system could be
designed either way.

So my question is this: Does it matter at all where you put the semantics? And
the answer to that is, I think, “yes”—and for more-or-less the same reason that
“syntax matters.”

The XML ecosystem implicitly imagines a radical decouplingbetween the act
of data modeling and the act of processing data. In fact, it breaks the act of data
modeling itself into several discrete stages, which, in practical terms, translates
into a decoupling of the social act of marking up texts from the social act of mod-
eling data, and both from the social act of processing data. Iuse the term “social
act” as a way of designating different potential functions—“job descriptions,” if
you like—in the overall job of computation. You can be the person who decides
how a grammar is applied in a particular document instance. Or, you can be the
person who defines the grammar. Or, you can be the person who uses the grammar
and the document to translate the information to another state.

What the Lispers argue for, is really a world in which the three things are

6



combined. Some partition of roles is, of course, still possible, but in practice, the
Lisp ecosystem more-or-less demands that data modeling anddata processing are
never far from one another. While it’s possible to imagine ans-expression tagger
(maybe that would be a “parenner”), it is less easy to imaginethat person not also
being, at some level, a programmer.

But forget about Lisp (again). Because the real issue is not whether Lisp is
good or bad. The issue is whether the distributed, decoupledmodel embodied
in the XML ecosystem limits or expands our ideas about data modeling, as com-
pared to a more centralized workflow in which data modeling isnever far from
data processing. And here, I will risk starting my own flame war by saying that,
practically speaking, it does.

It does, because it is not possible to fully describe the semantics of anything
apart from the processing that is enabled by the semantic relationships so de-
scribed. An XML schema (and here, I’m talking about any kind of schema what-
soever) describes a grammar. It is, in fact, explicitly based on BNF grammars,
which, of course, are used to describe programming languages. This, and not any
particular instantiation, is the “data model” (a statementwith which the design-
ers of XML, by the way, are in full agreement). Typically, a schema defines a
set of data types and a set of ordering constraints (which, again, are semantically
meaningfulonly at the point at which the document is processed). But why stop
there? Why not use that schema to define a set of control structures for processing
data? Why not state whether variables are bound late or early, lazily or not? Why
not define a set of additional data structures into which the data may be trivially
transformed?

Well, you say, they did! It’s called XSLT. And it’s separate.And optional.
And that’s good. And you might be right. In fact, I think you are. But the fact still
remains: Every data model is asymptotically approaching a processing model. I
would even suggest that the question, “Are the data models wehave proposed for
the humanities sufficient to the task?” is equivalent to the question, “Does the
semantics reside in the right place in our model?”

Not because shifting the semantics around give you new processing powers,
but because to the degree that any data model attempts to stayneutral with respect
to future processing regimes, it must limit the practical affordances offered by that
model to the data modeler. To do so might be to commit an act of magnanimity;
to construct a data model in the absence of any particular judgment about future
processing is presumably to allow a thousand processes to flourish. But it is also
to limit what can be modeled—because that isexactly where a good number of
the decisions about semantics is being made. We may comfort ourselves with the

7



thought that every step up the chain of abstraction allows more flexibility at the
processing level. But a dark voice remains—and should remain: Every step up
the chain of abstraction also means separating further and further from what is
presumably the point of all of this—namely, the attempt to exploit the computa-
tional tractability of the data. To give the processor more power, is necessarily to
give the data modeler less control. Not just less control over the processing, but
less control over the data model itself. So we really must askourselves this: Does
having less control over the data model—which is not the same thing as saying
“more flexibility”—make sense for our data?

Should we have gone this way? Should we have attempted to create a more
tightly coupled ecosystem in which the line between data modeling and data pro-
cessing vanishes as a practical matter (as it does in, for example, SQL)? Should
we now think about doing that? I don’t know. And I’m sorry to end withsome-
thing so obviously decoupled from a practical recommendation of any kind. But I
take the point of this symposium to have been, “Can we do what we want to do?”
And I think it’s at least apposite to point out that as long as we’re talking about
what we want todo, we are talking at least partially about what our data models
cannot do by themselves.

8



Works Cited

Friedman, Daniel P and Mitchell Wand.Essentials of Programming Languages.
3rd ed. Boston: MIT P, 2006.

Parr, Terence.Language Implementation Patterns. Raleigh, NC: Pragmatic, 2010.
Prescod, Paul. “XML is not S-Expressions.” Web. 11 March 2012. http://www.

prescod.net/xml/sexprs.html.
Wittgenstein, Ludwig.Philosophical Investigations. Ed. P. M. S. Hacker. 4th ed.

Malden, MA: Wiley-Blackwell, 2009.

9


